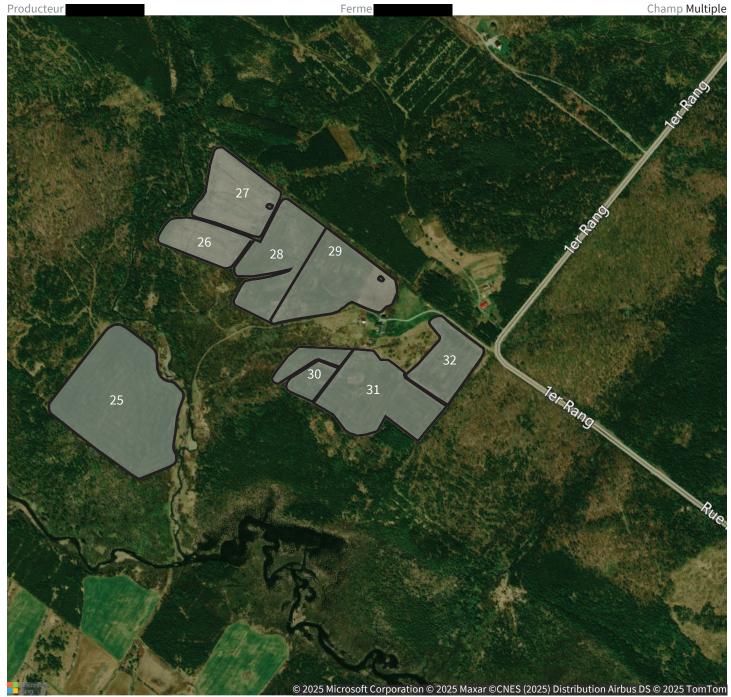
Groupe Conseils Agro Bois-Francs905 Blvd. des Bois-Francs Sud
Victoriaville, QC G6P 5W1
Bureau 819-260-3998

Imprimer la carte de champ

August 21, 2025

147.51 ac(US)


Champs

Code/Nom du champ	Superficie	Cultures	Comté/PLS	Lat./Long.
1 1	1.6 HA	Non semé		45.731521, -71.663487
10 10	0.6 HA	Non semé		45.727709, -71.659155
11 11	3.4 HA	Non semé		45.728576, -71.657499
12 12	7.2 HA	Non semé		45.72291, -71.65606
14 14	5.6 HA	Non semé		45.722627, -71.659146
15 15	3.1 HA	Non semé		45.73127, -71.659167
16 16	0.9 HA	Non semé		45.729908, -71.657857
17 17	4.5 HA	Non semé		45.729747, -71.655846
18 18	4.9 HA	Non semé		45.728067, -71.653288
2 2	7.4 HA	Non semé		45.727702, -71.663736
21 21	4.1 HA	Non semé		45.726784, -71.645719
3	4.1 HA	Non semé		45.730139, -71.663041
4 4	0.9 HA	Non semé		45.728765, -71.661035
5 5	1.4 HA	Non semé		45.729798, -71.660066
6	3.1 HA	Non semé		45.72588, -71.662079
7	4.7 HA	Non semé		45.726553, -71.659611
8 8	0.9 HA	Non semé		45.728099, -71.6599
9 9	1.3 HA	Non semé		45.729039, -71.659441
TOTAL	59.7 HA			

Groupe Conseils Agro Bois-Francs905 Blvd. des Bois-Francs Sud
Victoriaville, QC G6P 5W1
Bureau 819-260-3998

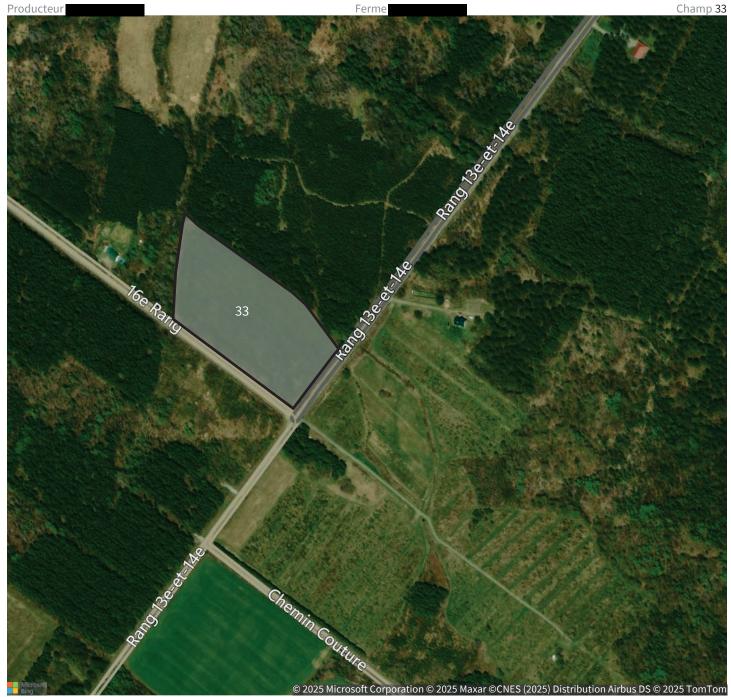
Imprimer la carte de champ

August 21, 2025

71.42 ac(US)

Champs

Code/Nom du champ	Superficie	Cultures	Comté/PLS	Lat./Long.
25 25	8.3 HA	Non semé		45.736009, -71.659178
26 26	1.9 HA	Non semé		45.73956, -71.656356
27 27	2.9 HA	Non semé		45.740655, -71.655125
28 28	3.9 HA	Non semé		45.739289, -71.65403
29 29	3.7 HA	Non semé		45.739355, -71.652145
30 30	1.5 HA	Non semé		45.736589, -71.652816
31 31	4.6 HA	Non semé		45.736245, -71.650921
32 32	2.1 HA	Non semé		45.736902, -71.648456


TOTAL

28.9 HA

Groupe Conseils Agro Bois-Francs905 Blvd. des Bois-Francs Sud
Victoriaville, QC G6P 5W1
Bureau 819-260-3998

Imprimer la carte de champ

August 21, 2025

6.18 ac(US)

Champs

Code/Nom du champ	Superficie	Cultures	Comté/PLS	Lat./Long.
33 33	2.5 HA	Non semé		45.734173, -71.688716
TOTAL	2.5 HA			

Groupe Conseils Agro Bois-Francs905 Blvd. des Bois-Francs Sud
Victoriaville, QC G6P 5W1
Bureau 819-260-3998

Imprimer la carte de champ

August 21, 2025

Champs

Code/Nom du champ	Superficie	Cultures	Comté/PLS	Lat./Long.
22 22	2.1 HA	Non semé		45.731185, -71.637144
23 23	0.9 HA	Non semé		45.728661, -71.635627
24 24	4.5 HA	Non semé		45.729517, -71.63411
Lepage 1 Lepage 1	1.6 HA	Non semé		45.725166, -71.634477
Lepage 2 Lepage 2	1.45 HA	Non semé		45.72323, -71.631151
Lepage 3 ? Lepage 3	1.44 HA	Non semé		45.72226, -71.63017
Miel 1 Miel 1	1.55 HA	Non semé		45.727117, -71.635877
Miel 2 Miel 2	2.2 HA	Non semé		45.725542, -71.632805
TOTAL	15.74 HA			

Groupe Conseils Agro Bois-Francs905 Blvd. des Bois-Francs Sud
Victoriaville, QC G6P 5W1
Bureau 819-260-3998

Imprimer la carte de champ

August 21, 2025

58.56 ac(US)

Champs

Code/Nom du champ	Superficie	Cultures	Comté/PLS	Lat./Long.
100 100	2.6 HA	Non semé		45.726679, -71.670913
101 101	2 HA	Non semé		45.727978, -71.668799
102 102	2.1 HA	Non semé		45.725713, -71.669122
103 103	2.7 HA	Non semé		45.724774, -71.667224
104 104	2.5 HA	Non semé		45.725692, -71.665183
105 105	3.3 HA	Non semé		45.723883, -71.665503
106 106	3.3 HA	Non semé		45.722804, -71.663644
107 107	5.2 HA	Non semé		45.724337, -71.662455

TOTAL

23.7 HA

Accrédité pour pH, pH tampon, Mat. Org., P, K, Ca, Mg, Al, Mn, Cu, Zn, B (Mehlich) par CEAEQ

Date de réception

29-sept.-20 7-oct.-20

Groupe conseil Agro Bois-Franc

21-sept.-2020

Échantillons

Date du rapport Numéro du certificat Numéro d'accréditation

Résultats en base sèche

168744 459

905, boul. Bois Francs Sud Victoriaville

Québec

338, Rang Miquelon Saint-Camille

G6P5W1

Échantillonné le :

J0A1G0

Par:

Charlyn Girouard

				É
		Résultats	d'analys	es
Nu	méro	634584	634585	63
Identificat	ion champ	12	18	
Culture pr	révue			
AEL-I- SOL-006	рН	6.2 MB	6.6 B	

Extraction Mehlich 3

_			Resultats	u analys	es		
	Nu	méro	634584	634585	634586		
lđe	Identification champ		12	18	25		
	Culture prévue						
	EL-I- L-006	рН	6.2 мв	6.6 B	6.3 ₿		
SO	L-1- L-007	pH tampon	6.4 м	7.0 ₿	6.4 M		
	EL-1- L-005	Mat. Org. %	7.3 TR	7.6 TR	5.3 R		
		Р	28 ™	40 P	20 ₽		
۱	kg/ha	K	63 ₽	72 P	76 ₽		
Ş	Š	Š	Ca	2 413 м	3 793 мв	2 169 м	
h		Mg	89 м	85 ⋈	142 8		
]	ppm	Al	1 022 8	1 027 в	816 мв		
Ā	ISP	P/AI*	1.2 1	1.7 1	1.1		
AEL-I-SOL-003+AEL-I-EQP-028		Mn	48.4 TR	56.4 ™	87.5 TR		
占		Cu	1.71 TR	1.92 TR	1.96 ™		
후	mdd	Zn	2.49 м	2.27 м	2.00 ₽		
힉	ď	В	0.32 ™	0.52 ▫	0.34 т		
`		S					
		Fe	204	202	169		
9	6	N total					
		C/N					
pp	m	N-NH ₄					
pp	m	N-NO ₃					

TP=Très pauvre, P=Pauvre, M=Moyen, MB=Moyen bon, B=Bon, R =Riche, TR=Très riche

Physique du sol

Granulom	étrie	12	18	25	
Sable	%				
Limon	%				
Argile	%				
Classe text	urale				
Type de	sol				

Besoins en chaux IVA 100%									
No laboratoire 634584 634585 634586									
No champ	12	18	25						
Culture prévue									
Quantité t/ha	5.2		4.8						
Type de chaux	Calcique		Calcique						

			I							
No ch	namp		12		18		2	5		
CEC (me	eq/100	g)	15.9	MB	13.4	. м	15.1	МВ		
Base	Marge r	noy.			Satur	atior	en b	ases		
K	0,3 - 2	2,0	0.5	М	0.6	м	0.6	} м		
Ca	25 - 6	50	33.9	М	63.3	R	32.1	М		
Mg	1 - 1	0	2.1	м	2.4	M	3.5	, B		
Total	10 - 9	90	36.5	М	66.3	В	36.2	2 м		
Rapport	Marge r	noy.		Rap	ports	entr	e les e	élém	ents	
K/Mg	0,1 - 0),5	0.22	В	0.26	В	0.16) м		
K/Ca	,01 - ,	06	0.01	м	0.01	Р	0.02	м		
Mg/Ca	,03-0,	25	0.06	М	0.04	м	0.11	В		
			Αι	tres	résult	ats				
Na / RAS	ppm	<5	17	0,4	12	0.2	7	0,2		
Conductivité électrique	mS/ci	m								

^{*} P/Al Valeur environnementale critique = limite entre bon et riche. Valeurs agronomiques critiques = limite entre pauvre et moyen, et, entre riche et très riche.

Estin	né	12		18		25	
Densité estir	née g/cm³	0.81	М	0.77	0.7	'9 M	
Porosité estimée %		67.8	М	69.4 *	69.	.3 м	
Perméabilité	estimée						
Conductivité hydraulique	cm/h						
Coef, de réserve eau utile (CRU)	g eau / 100 g sol						

TF = Très faible, F = Faible, B = Bon, E = Élevé, TE = Très élevé

R	e	m	а	ra	u	es

Résultats applicables aux échantillors soumis à l'énaéyes seulement. Ce document est à l'usage exclusif du client et est confidentiel, si vous n'étes pas le destinataire visé, soyez avisé que tout usage, raproduction, ou distribution de ce document est strictement interdit. Ca cartificat ne doit pas être reproduit, sinon en entier, sans fautorisation écrite du laboratoire.

	and the state of t
Mr.	

Contro	de qualité	Vale	urs attendu	ies: 85 à 1	15 %	Résultats de	Résultats des échantillons contrôles passés avec vos échantillons, résultats en % des valeurs attendues pour chacun des paramètres								
pH	MO	Р	K	Ca	Mg	Al	Mn	Cu	Zn	В	S	Na	Fe	N total	C.E.
99.0	104.9	98.5	100.7	104.0	101.8	104.3	104.5	104.3	99.8	96.9					

Copyright 2007

Michel Champagne, agronome

Mirela Vlad Cristea, chimiste ID Chimiste SVP 2015-010

1642, de la Ferme, La Pocatière (Québec) G0R 1Z0 Tél. : 418 856,1079 Téléc. : 418 856,6718 Sans frais: 1 866-288-1079 Courriel: agro-enviro-lab@bellnet.ca www.agro-enviro-lab.com

Copyright 2007

No d'envoi : 2952

Date de réception 20 sept 21 Date du rapport 27 sept 21

191262 No. demande d'analyse Numéro d'accréditation 459

Méthode Extraction Mehlich 3 Résultats en base sèche

Provenance

Groupe conseil Agro Bois-Franc 905, boul. Bois Francs Sud

Victoriaville G6P5W1

Accrédité pour pH, pH tampon, K, Ca, Mg, Al, Mn, Cu, Zn, par CEAEQ Échantillons

> 338, Rang Miquelon Saint-Camille J0A1G0

Par :Cédric Austin

Échantillonné le :26 août 21

			Résultats	d'analys	es	
Nun	néro la	boratoire	SO-0680022	SO-0680023	SO-0680024	SQ-0680025
lder	tification	on champ	4-5	8-9	10	14
Cult	ure pré	ivue				
AE SOL		pН	6.1 MB	6.1 MB	6.7 B	6.0 ME
AEL-I- SOL-007		pH tampon	6.1 в	6.3 в	7.0 R	6.6 B
AEL-I- SOL-005		Mat. Org. %	9.4 TR	9.0 TR	6,8 R	6.7 R
		Р	54 P	65 P	314 TR	69 P
	ha	K	94 P	86 P	531 R	87 P
AEL-I-SOL-003+AEL-I-EQP-028	kg/ha	Ca	3110 м	3032 M	5813 в	2671 P
		Mg	193 в	174 в	464 TR	163 B
뿍	ppm	Al	1470 R	1403 R	1010 в	915 MI
AEL	ISP	P/AI*	1,6 1	2,1 1	13.9 1	3.3 1
03+		Mn	10.8 MB	12.4 MB	24.3 TR	35.8 TF
7		Cu	1,23 TR	1.47 TR	2.73 TR	2,01 TF
<u>S-</u>	اء	Zn	2.71 P	2.95 м	8.64 TR	4.57 MI
핔	udd	В	0.29 TP	0.38 TP	0.72 P	0.43 TF
<		S				
		Fe	208	189	226	231
9	6	N total				
		C/N				
pp	m	N-NH ₄				
pr	m	N-NO ₃				

Physique du sol

Granulom	étrie	4-5	8-9	10	14
Sable	%				
Limon	%				
Argile	%				
Classe text	urale				
Type de	sol				

Bes	Besoins en chaux IVA 100%												
No laboratoire	SO-0680022	SO-0680023	SQ-0680024	SO-0680025									
No champ	4-5	8-9	10	14									
Culture prévue													
Quantité t/ha	8.0	6.0		3.5									
Type de chaux	Calcique	Calcique	Dolomitique	Catcique									

		_		_		_		_				
	CEC et saturations en bases											
No ch	amp		4-5		8-9		10		14			
CEC (me	q/100	g)	20.3	В	18.1	МВ	19.8	MB	14.9	М		
Base	Marge	moy.			Satura	ition	en ba	ses				
К	0.3 -	2.0	0.5	М	0.5	М	3,1	R	0.7	М		
Ca	25 -	60	34.2	М	37.3	В	65.5	R	39.9	В		
Mg	1 - 1	10	3.5	В	3.6	В	8.7	В	4.0	В		
Total	10 -	90	38.3	М	41.4	В	77.3	R	44.6	В		
Rapport	Marge	moy.		Rap	ports entre les éléments							
K/Mg	0.1 -	0,5	0.15	М	0.15	М	0.35	В	0.17	М		
K/Ca	.01 -	.06	0.02	М	0.01	М	0.05	В	0.02	М		
Mg/Ca	.03-0	25	0.10	В	0.10	М	0.13	В	0.10	В		
	Autres résultats											
Na / RAS	ppm	<5	11	0,2	13	0.3	6	0,1	12	0.3		
Conductivité électrique	mS/d	cm										

* P/AI Valeur environnementale critique = limite entre bon et riche, Valeurs agronomiques critiques = limite entre peuvre et moyen, et, entre riche et très riche.

Estin	né	4-5		8-9		10		14	
Densité estin	née g/cm³	0.84	М	0.82	М	0.95	М	0.80	М
Porosité estir	née %	63.5	М	62.6	М	55.6	В	57.7	В
Perméabilité	estimée								
Coef.	cm/h								
Coef. de réserve eau utile (CRU)	g eau / 100 g sol								

Résulteits applicables aux échemitions soumit à l'analyse seulement. Ce document est à l'usage exclusif du client et est confidenties, ai vous n'éles pas le destinateire visé, soyez avisé que tout usage, reproduction, ou distribution de ce document est strictement intendit. Ce certificat ne doit pas être reproduit, sinon en enflor, sens l'autorisation écrite du laboratoire. Remarques

Une ou plusieurs remarques ont été trouvées pour féchantillon "SO-0680022", veuillez-vous référer au rapport individuel pour plus de détails.
Une our plusieurs remarques ont été trouvées pour féchantilion "SO-0680023", veuillez-vous référer au rapport individuel pour plus de détails.
Une ou plusieurs remarques ont été trouvées pour féchantillon "\$Q-0-680024", veuillez-vous référer au rapport individuel pour plus de détails.
Une out plusieurs remarques ont of the roundes pour featuratifion "\$0.0680025", voulitez-vous référer au rapport individuel pour plus de détails.
Une ou plusieurs remarques ont ete trouvees pour rechantillon. Su-upougzo, veullez-vous referer eu repport monvioues pour peus us deterits.

Contrôle	qualité	Valeu	rs attendu	es: 85 à 1	115 %	Résultats de	es échantillon	s contrôles pa	ssés avec vos échantillons, résultats en % des valeurs attendues pour chacun des paramètres						
рH	MO	Р	К	Ca	Mg	Al	Mn	Cu	Żn	В	S	Na	Fe	N total	C.E.
100.2	106.3	103.4	100.6	94.1	100.4	93.6	96.1	97.7	99.8	101.3					

1642, de la Ferme, La Pocatière (Québec) G0R 1Z0 Tél. : **418 856.1079** Téléc. : **418 856.6718**

Sans frais: 1 866-288-1079

Courriel: agro-enviro-lab@bellnet.ca www.agro-enviro-lab.com

Michel Champagne, agronome

Katy Beaulieu, Chimiste, B.sc

Copyright 2007

No d'envoi : 2952

20 sept 21 Date de réception Date du rapport

27 sept 21 191262

Numéro d'accréditation 459 Méthode Extraction Mehlich 3 Résultats en base sèche

No. demande d'analyse

<u>Provenance</u>

Groupe conseil Agro Bois-Franc 905, boul. Bois Francs Sud

Victoriaville G6P5W1

Accrédité pour pH, pH tampon, K, Ca, Mg, Al, Mn, Cu, Zn, par CEAEQ Échantillons

> 338, Rang Miquelon Saint-Camille J0A1G0

Par : Cédric Austin

Échantillonné le :26 août 21

			Résultats	d'analys	es	
Nun	néro lal	ooratoire	SQ-0680026	SO-0680027	SO-0680028	SO-0680029
lden	tificatio	on champ	15	16	17	21
Cult	ure pré	vue				
SOL		рН	6.1 MB	5.9 MB	6.1 MB	6.4 MI
AEL-I- SOL-007		pH tampon	6.5 B	6.5 в	6.4 в	6.7 R
AEL-I- SOL-005		Mat. Org. %	8,6 TR	7.8 TR	8.0 TR	8.8 TF
		P	39 TP	72 M	38 TP	42 P
	ha	K	78 P	103 P	81 P	100 P
AEL-I-SOL-003+AEL-I-EQP-028	kg/ha	Ca	3316 M	2390 P	3000 M	3798 M
O		Mg	205 в	183 в	152 в	111 M
끅	ppm	Al	853 MB	892 MB	1174 в	992 ₽
AEI	ISP	P/AI*	2.0 1	3.6 1	1.4 1	1.9 1
03+		Mn	24.3 TR	55.6 TR	39,4 TR	45.4 TF
7-0	I	Cu	2,15 TR	2.37 TR	2.04 TR	1.96 ™
)S-	E	Zn	3.97 мв	3.73 M	2.98 M	2.36 P
Ą	mdd	В	0,36 TP	0.30 TP	0.27 TP	0.31 ™
٩		S				
		Fe	208	194	199	187
9	6	N total				
		C/N				
pp	m	N-NH ₄				
pr	m	N-NO ₃				

Physique du sol

Granulom	étrie	15	16	17	21
Sable	%				
Limon	%				
Argile	%				
Classe text	urale				
Type de	sol				

Besoins en chaux IVA 100%											
No laboratoire	SO-0680026	SO-0680027	SO-0680028	\$0-0680029							
No champ	15	16	17	21							
Culture prévue											
Quantité t/ha	4.5	4.0	5.3	2.3							
Type de chaux	Calcique	Calcique	Calcique	Catcique							

	CE	C et s	atur	ations	s en	base	s		
No ch	amp	15	5	16		17		21	
CEC (me	q/100g)	17.6	3 МВ	15.0	М	17.3	MB	16.1	MB
Base	Marge mo	/.		Satur	atior	en ba	ases		
К	0.3 - 2.0	0.5	5 M	0.8	М	0.5	М	0.7	М
Ca	25 - 60	42.0) в	35.7	В	38.6	В	52.6	В
Mg	1 - 10	4.3	3 в	4.5	В	3.3	В	2.6	М
Total	10 - 90	46.9) в	41.0	В	42.4	В	55.9	В
Rapport	Marge mo	/-	Rapports entre les éléments						
K/Mg	0.1 - 0.5	0.12	2 м	0.17	М	0.16	М	0.28	В
K/Ca	.0106	0.0	1 м	0.02	В	0.01	М	0.01	М
Mg/Ca	.03- 0.25	0.10) в	0.13	В	0.08	М	0.05	М
		A	utres	résult	ats	-			
Na / RAS	ppm <	15	0,3	12	0,3	15	0.3	15	0.3
Conductivité électrique	mS/cm								

* P/A| Veleur environnementale critique = limite entre bon et riche. Valeurs agronomiques critiques = limite entre pauvre et moyen, et, entre riche et très riche.

Estin	né	15		16		17		21	
Densité estin	née g/cm³	0.82	М	0.81	М	0.82	М	0.76	В
Porosité estir	née %	61.7	М	60.5	М	60.5	М	61.0	М
Perméabilité	estimée								
Coef. Perméabilité	cm/h								
Coaf. de réserve eau utile (CRU)	g eau / 100 g sol								

TF = Très faible, F = Fiffile, B = Bon, E = Élevé, TE = Très élevé

Damanasa	Résultats applicables aux échantitions soumis à l'analyse seulement. Ce document est à l'usage axclusif du client et est confidentiel, si vous n'étes pas le destinataire visé, soyez avisé
Remarques	que tout usage, reproduction, ou distribution de ce document est strictement interdit. Ce certificat ne doit pas être reproduit, sinon en entier, sans l'autorisation écrite du laboratoire.

Une ou plusieurs remarques ont été trouvées pour l'échantillor "SO-0680026", veuillez-vous référer au rapport individuel pour plus de détails.	
Une ou plusieurs remarques ont été trouvées pour l'échantillon "SO-0680027", veuillez-vous référer au rapport individuel pour plus de détails.	
Une ou plusieurs remarques ont été trouvées pour l'échantillon "SO-0680028", veuillez-vous référer au rapport individuel pour plus de détails.	
Une ou pusieurs remarques ont été trouvées pour l'échantillon "SO-0680029", veuillez-vous référer au rapport individuel pour plus de détails.	

Cor	ntrôle	qualité	Valeu	ırs attendu	es: 85 à '	115 %	Résultats des échantillons contrôles passés avec vos échantillons, résultats en % des valeurs attendues pour chacun des								r chacun des pa	ramètres
pl	Н	MO	Р	К	Ca	Mg	AJ	Mn	Cu	Zn	В	S	Na	Fe	N total	C.E.
99	.6	106.3	103.4	100.6	94.1	100.4	93.6	96.1	97.7	99.8	101.3					

1642, de la Ferme, La Pocatière (Québec) G0R 1Z0 Tél.: 418 856.1079 Téléc.: 418 856.6718

Sans frais: 1 866-288-1079 Courriel: agro-enviro-lab@bellnet.ca www.agro-enviro-lab.com

Michel Champagne, agronome

Katy Beaulieu, Chimiste, B.sc

Copyright 2007

No d'envoi : 2952

Groupe conseil Agro Bois-Franc

Échantillonné le :26 août 21

Accrédité pour pH, pH tampon, K, Ca, Mg, Al, Mn, Cu, Zn, par CEAEQ Échantillons

Date de réception Date du rapport

20 sept 21

27 sept 21

191262

No. demande d'analyse Numéro d'accréditation Méthode Extraction Mehlich 3

Résultats en base sèche

459

905, boul. Bois Francs Sud Victoriaville G6P5W1

Provenance

Saint-Camille J0A1G0

Par :Cédric Austin

338, Rang Miquelon

Nun	néro la	boratoire	SO-0680030	SO-0680031	SQ-0680032	SO-0680033
	_		26	27	28-29	30-31
AEL-I- SOL-007 PH I	évue					
		рН	6.3 MB	6.3 MB	5.7 M	6.1 ME
AE	L-I-	pH tampon	6.7 R	6.7 R	6.2 B	6.5 B
		Mat. Org. %	6.8 R	7.9 TR	7.1 R	9.0 TF
		Р	60 P	57 P	43 P	31 TF
	g	K	107 P	104 P	96 P	82 P
028	kg	Ca	3333 M	4052 MB	2087 P	4233 M
1		Mg	245 R	272 R	154 B	224 B
	ppm	Al	784 мв	864 MB	1186 в	857 мі
	ISP	P/AI*	3.4 1	3.0 1	1,6 1	1.6 1
03+		Mn	69,2 TR	71.1 TR	28.3 TR	41.9 TF
7-0		Cu	2.47 TR	2.36 TR	1.74 TR	2,29 TF
တ္	٤	Zn	2.16 P	3.00 M	3.70 M	3.42 N
핔	mdd	В	0.29 TP	0.32 TP	0.24 TP	0.41 ™
۹		S				
		Fe	162	157	209	176
9	%	N total				
		C/N				
pp	m	N-NH ₄				
pr	m	N-NO ₃				

TP=Très pauvre, P=Pauvre, M=Moyen, MB=Moyen bon, B=Bon, R=Riche, TR=Très riche

Physique du sol

Granulom	étrie	26	27	28-29	30-31
Sable	%				
Limon	%				
Argile	%				
Classe text	urale				
Type de	sol				

Bes	oins en c	haux IVA	۱00% د	
No laboratoire	SO-0680030	\$0-0680031	SO-0680032	SO-0680033
No champ	26	27	28-29	30-31
Culture prévue				
Quantité t/ha	2.0	2.5	7.3	4.5
Type de chaux	Calcique	Calcique	Calcique	Calcique

	C	EC	et sa	tura	ations	s en	base	s				
No ch	amp		26		27		28-2	9	30-31			
CEC (me	q/100	g)	15.3	МВ	17.6 MB		17.2	17.2 MB		MB		
Base	Marge	moy.		Saturation en bases								
К	0.3 -	2.0	0.8	М	0.7	М	0.6	М	0.5	М		
Ca	25 -	60	48.6	В	51.3	В	27.0	М	48.3	В		
Mg	1-1	10	5.9	В	5.7	В	3.3	В	4.3	В		
Total	10 -	90	55.3	В	57.7	В	31.0	М	53.1	В		
Rapport	Marge	moy.		Rap	ports	entr	e les é	lém	ents			
K/Mg	0.1 -	0.5	0.13	М	0.12	М	0.19	М	0.11	М		
K/Ca	.01 -	.06	0.02	М	0.01	М	0.02	В	0.01	Р		
Mg/Ca	.03-0	.25	0.12	В	0.11	В	0.12	В	0.09	М		
			A	utres	résult	ats						
Na / RAS	ppm	<5	7	0.1	6	0.1	11	0,3	10	0,2		
Conductivité électrique	mS/d	cm										

* P/AI Valeur environnementale critique = limite entre bon et riche. Valeurs agronomiques critiques = limite entre pauvre el moyen, et, entre riche et très riche.

Estin	né	26		27		28-29		30-31	
Densité estin	née g/cm³	0.86	М	0.86	М	0.92	М	0.83	М
Porosité estin	née %	57.1	В	59.3	В	59.7	В	62.5	М
Perméabilité	estimée								
Coef. Perméabilité	cm/h								
Coef, de réserve eau utile (CRU)	g eau / 100 g not								

TF = Très faible, F = F&RNe, B = Bon, E = Élevé, TE = Très élevé

Remarques

to the total of th	
Une ou plusieurs remarques ont été trouvées pour l'échantillon "SO-0680030", veuillez-vous référer au rapport individuel pour plus de détails.	
Une our plusieurs remarques ont été brouvées pour l'échantillon "SO-0680031", veuillez-vous référer au rapport individuel pour plus de détails.	
Une ou plusieurs remenues ont été trouvées pour l'échantition "SO-0680032", veuillez-vous référer au rapport individuel pour plus de détails.	
Une our plusieurs remarques ont été trouvées pour l'échantilion "SO-0680033", veuillez-vous référer au rapport individuet pour plus de détails.	

Contrôle qualité Valeurs attendues: 85 à 115 %					Résuttats de	es échantillon	s contrôles pa	ssés avec vos	échantillons,	résultats en %	des valeurs a	ttendues pour	chacun des pa	aramètres	
рН	MO	Р	К	Ca	Mg	Al	Mn	Cu	Zn	В	S	Na	Fe	N total	C.E.
99.6	106.3	103.6	105.0	108.9	105.5	100.8	99.0	99.4	104.6	99.8					

1642, de la Ferme, La Pocatière (Québec) G0R 1Z0 Tél.: 418 856.1079 Téléc.: 418 856.6718

Sans frais: 1 866-288-1079 Courriel: agro-enviro-lab@bellnet.ca www.agro-enviro-lab.com

Michel Champagne, agronome

Katy Beaulieu, Chimiste, B.sc

					÷.

Sol

Copyright 2007

Accrédité pour pH, pH tampon, Mat.Org, P, K, Ca, Mg, Cu, Zn, B(Mehlich) par CEAEQ. Accrédité par CEAEQ, ISO-CEI 17025 Numéro du champ: Échantillon 103 Numéro du labo: SO-0634581 Groupe conseil Agro Bois-Franc Date de réception: 29 sept 20 905, boul. Bois Francs Sud 06 oct 20 Victoriaville Date du rapport: G6P5W1 Méthode: Extraction Mehlich 3 Numéro d'accréditation: 459 Numéro du certificat: 168743 Échantillonné le: 21 sept 20 Par: Résultat d'analyse Culture prévue : Base sèche Extraction Mehlich 3 Méthode Dosage ICP AEL-I-SOL-006-007 AEL-I-SOL-003+AEL-I-EQP-028 Nom méthode P/AI1-2-3 Matière Cu Zn В Éléments eau tampon organique Phosphore Potassium Calcium Magnésium Aluminium ISP1 Manganèse Zinc Bore Soufre Unités % ppm kg/ha mag 103 6.4 6.4 7.0 28 51 2075 62 1150 1.1 18.4 1.89 2.72 0.44 Riche Bon Moyen bon Moyen **Pauvre** 1- P/Al Valeur environnementale critique = limite entre bon et riche. Valeurs agronomiques critiques = limite entre pauvre et moyen, et, entre riche et très riche 2-Si la culture est la canneberge, le calcul est le P / (Al+Fe) 3- Sols Organiques, ISP 3: P / (Al+(5*Fe)) TP très pauvre, P pauvre, M moyen, MB moyen bon, B Bon, R riche, TR très riche Besoins en chaux IVA 100% CEC et saturations en bases Autres résultats 15 1 MB C/N Besoins en chaux (t/ha) 5.5 CEC (meq/100 g) N total (%) Type de chaux Calcique Saturation (%) Marge moy N-NO3 (ppm) N-NH4 (ppm) Conductivité Potassium 0.3 - 2.004 М 209 Fer (ppm) Sable Limon Argile Contrôle qualité 25 - 60 Calcium 30.7 М Texture Valeurs attendues: 85 à 115 % 1 - 10 1.5 М Magnésium 99.9 Total des bases 10 - 90 рΗ Classe texturale M.O 104.9 S Type de sol Rapports Marge moy Ρ 103.5 В 108.0 K/Mg 0.1 - 0.50.25 В Densité estimée Moyenne 0.83 0.01 Κ 97.7 Mn 97.5 K/Ca .01 - .06 М Porosité estimée Basse 57.5 103.3 Cu 99.1 Mg/Ca .03- 0.25 0.05 Perméabilité estimée Coefficient de perméabilité 99.0 Zn 102.8 9 Mg Sodium (ppm) Coefficient réserve eau utile (CRU) g eau / 100 g sol sec Ratio d'adsorption 100.7 < 5,0 0.26 Voir votre conseiller pour interprétation des résultats plus spécifique Très faible, Faible, Bon, Élevé, Très Résultats applicables aux échantillons soumis à l'analyse seulement. Ce document est à l'usage exclusif du client et est confidentiel, si vous n'êtes pas le destinataire visé, soyez av que tout usage, reproduction, ou distribution de ce document est strictement interdit. Ce certificat ne doit pas être reproduit, sinon en entier, sans l'autorisation écrite du laboratoire. Très faible, Faible, Bon, Élevé, Très élevé

1642, de la Ferme, La Pocatière (Québec) G0R 1Z0 Tél. : **418 856.1079** Téléc. : **418 856.6718**

Sans frais: 1 866-288-1079 Courriel: agro-enviro-lab@bellnet.ca www.agro-enviro-lab.com the state of the s

Wlad

ID Chimiste: SVP 2015-010

Sol

Copyright 2007

Accrédité pour pH, pH tampon, Mat.Org, P, K, Ca, Mg, Cu, Zn, B(Mehlich) par CEAEQ. Accrédité par CEAEQ, ISO-CEI 17025 Numéro du champ: Échantillon 105 Numéro du labo: SO-0634582 Groupe conseil Agro Bois-Franc Date de réception: 29 sept 20 905, boul. Bois Francs Sud 06 oct 20 Victoriaville Date du rapport: G6P5W1 Méthode: Extraction Mehlich 3 Numéro d'accréditation: 459 Numéro du certificat: 168743 Échantillonné le: 21 sept 20 Par: Résultat d'analyse Culture prévue : Base sèche Extraction Mehlich 3 Méthode Dosage ICP AEL-I-SOL-006-007 AEL-I-SOL-003+AEL-I-EQP-028 Nom méthode P/AI1-2-3 Zn Cu В Matière Éléments eau tampon organique Phosphore Potassium Calcium Magnésium Aluminium ISP1 Manganèse Zinc Bore Soufre Unités % ppm kg/ha mag 105 6.1 6.3 6.6 52 80 2063 84 996 2.3 103.5 3.61 4.68 0.33 Riche Bon Moyen bon Moyen **Pauvre** 1- P/Al Valeur environnementale critique = limite entre bon et riche. Valeurs agronomiques critiques = limite entre pauvre et moyen, et, entre riche et très riche 2-Si la culture est la canneberge, le calcul est le P / (Al+Fe) 3- Sols Organiques, ISP 3: P / (Al+(5*Fe)) TP très pauvre, P pauvre, M moyen, MB moyen bon, B Bon, R riche, TR très riche Besoins en chaux IVA 100% CEC et saturations en bases Autres résultats 156 MB C/N Besoins en chaux (t/ha) 6.0 CEC (meq/100 g) N total (%) Type de chaux Calcique Saturation (%) Marge moy N-NO3 (ppm) N-NH4 (ppm) Conductivité Potassium 0.3 - 2.006 М 204 Fer (ppm) Sable Limon Argile Contrôle qualité 25 - 60 Calcium 29.5 М Texture Valeurs attendues: 85 à 115 % 1 - 10 2.0 М Magnésium 99.9 Total des bases 10 - 90 рΗ Classe texturale M.O 104.9 S Rapports Marge moy Type de sol Ρ 98.5 В 96.9 K/Mg 0.1 - 0.50.29 В Densité estimée Moyenne 0.80 Κ 100.7 Mn 104.5 K/Ca .01 - .06 0.02 М Porosité estimée Basse 57.2 Ca 104.0 Cu 104.3 Mg/Ca .03- 0.25 0.07 Perméabilité estimée Coefficient de perméabilité 101.8 Zn 99.8 10 Mg Sodium (ppm) Coefficient réserve eau utile (CRU) g eau / 100 g sol sec Ratio d'adsorption < 5,0 0.27 du sodium Voir votre conseiller pour interprétation des résultats plus spécifique Très faible, Faible, Bon, Élevé, Très Résultats applicables aux échantillons soumis à l'analyse seulement. Ce document est à l'usage exclusif du client et est confidentiel, si vous n'êtes pas le destinataire visé, soyez av que tout usage, reproduction, ou distribution de ce document est strictement interdit. Ce certificat ne doit pas être reproduit, sinon en entier, sans l'autorisation écrite du laboratoire. Très faible Faible Bon Élevé Très élevé

1642, de la Ferme, La Pocatière (Québec) G0R 1Z0 Tél. : **418 856.1079** Téléc. : **418 856.6718** Sans frais : 1 866-288-1079

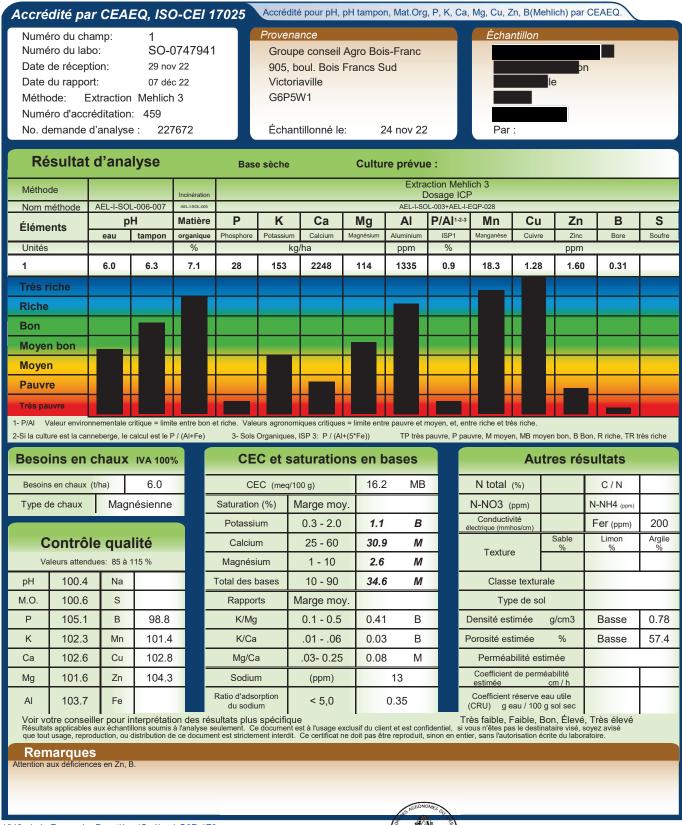
Sans frais: 1 866-288-1079 Courriel: agro-enviro-lab@bellnet.ca www.agro-enviro-lab.com

Sol

Copyright 2007

Accrédité pour pH, pH tampon, Mat.Org, P, K, Ca, Mg, Cu, Zn, B(Mehlich) par CEAEQ. Accrédité par CEAEQ, ISO-CEI 17025 Numéro du champ: Échantillon 106 Numéro du labo: SO-0634583 Groupe conseil Agro Bois-Franc Date de réception: 29 sept 20 905, boul. Bois Francs Sud 06 oct 20 Victoriaville Date du rapport: G6P5W1 Méthode: Extraction Mehlich 3 Numéro d'accréditation: 459 Numéro du certificat: 168743 Échantillonné le: 21 sept 20 Par: Résultat d'analyse Culture prévue : Base sèche Extraction Mehlich 3 Méthode Dosage ICP AEL-I-SOL-006-007 AEL-I-SOL-003+AEL-I-EQP-028 Nom méthode P/AI1-2-3 Zn Cu В Matière Éléments eau tampon organique Phosphore Potassium Calcium Magnésium Aluminium ISP1 Manganèse Zinc Bore Soufre Unités % ppm kg/ha mag 106 6.1 6.6 5.9 107 88 2465 141 620 7.7 70.6 4.83 5.49 0.38 Riche Bon Moyen bon Moyen **Pauvre** 1- P/Al Valeur environnementale critique = limite entre bon et riche. Valeurs agronomiques critiques = limite entre pauvre et moyen, et, entre riche et très riche 2-Si la culture est la canneberge, le calcul est le P / (Al+Fe) 3- Sols Organiques, ISP 3: P / (Al+(5*Fe)) TP très pauvre, P pauvre, M moyen, MB moyen bon, B Bon, R riche, TR très riche Besoins en chaux IVA 100% CEC et saturations en bases Autres résultats 139 M C/N Besoins en chaux (t/ha) 3.0 CEC (meq/100 g) N total (%) Type de chaux Calcique Saturation (%) Marge moy N-NO3 (ppm) N-NH4 (ppm) Conductivité Potassium 0.3 - 2.007 М 254 Fer (ppm) Sable Limon Argile Contrôle qualité 25 - 60 В Calcium 39.7 Texture Valeurs attendues: 85 à 115 % 1 - 10 3.8 В Magnésium 99.9 Total des bases 10 - 90 В рΗ Classe texturale M.O 104.9 S Rapports Marge moy Type de sol Ρ 98.5 В 96.9 K/Mg 0.1 - 0.50.19 M Densité estimée Moyenne 0.84 Κ 100.7 Mn 104 5 K/Ca .01 - .06 0.02 М Porosité estimée Basse 55.7 Ca 104.0 Cu 104.3 Mg/Ca .03- 0.25 0.10 Perméabilité estimée Coefficient de perméabilité 101.8 Zn 99.8 13 Mg Sodium (ppm) Coefficient réserve eau utile (CRU) g eau / 100 g sol sec Ratio d'adsorption < 5,0 0.32 du sodium Voir votre conseiller pour interprétation des résultats plus spécifique Très faible, Faible, Bon, Élevé, Très Résultats applicables aux échantillons soumis à l'analyse seulement. Ce document est à l'usage exclusif du client et est confidentiel, si vous n'êtes pas le destinataire visé, soyez av que tout usage, reproduction, ou distribution de ce document est strictement interdit. Ce certificat ne doit pas être reproduit, sinon en entier, sans l'autorisation écrite du laboratoire. Très faible Faible Bon Élevé Très élevé

1642, de la Ferme, La Pocatière (Québec) G0R 1Z0 Tél. : **418 856.1079** Téléc. : **418 856.6718** Sans frais : 1 866-288-1079


Sans frais: 1 866-288-1079 Courriel: agro-enviro-lab@bellnet.ca www.agro-enviro-lab.com

Sol

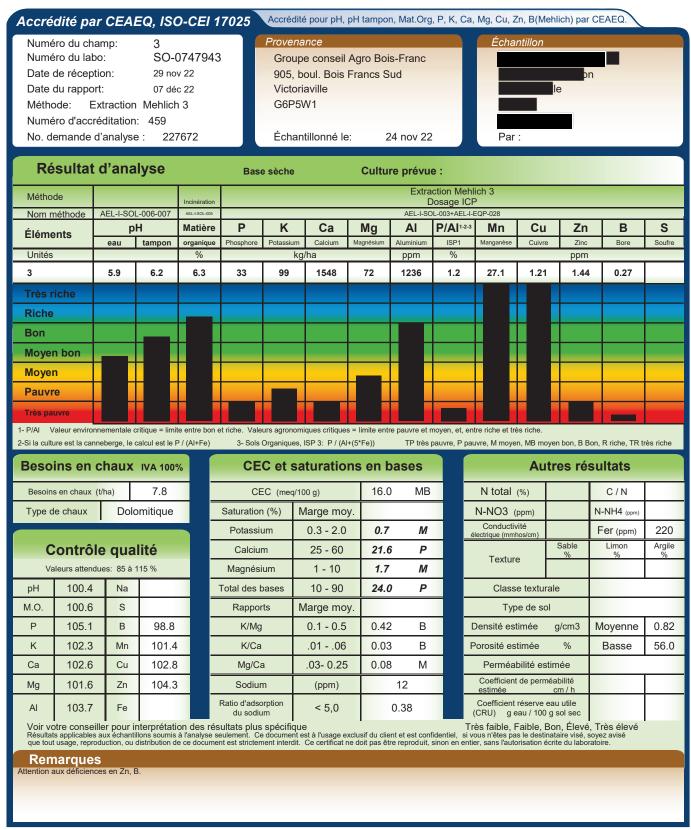
Copyright 2007 No. d'envoi : 15033


1642, de la Ferme, La Pocatière (Québec) G0R 1Z0 Tél. : **418 856.1079** Téléc. : **418 856.6718** Sans frais : 1 866-288-1079

Courriel: info@agro-enviro-lab.com www.agro-enviro-lab.com Jean-François Bouchard, Agronome, B.sc

Sol

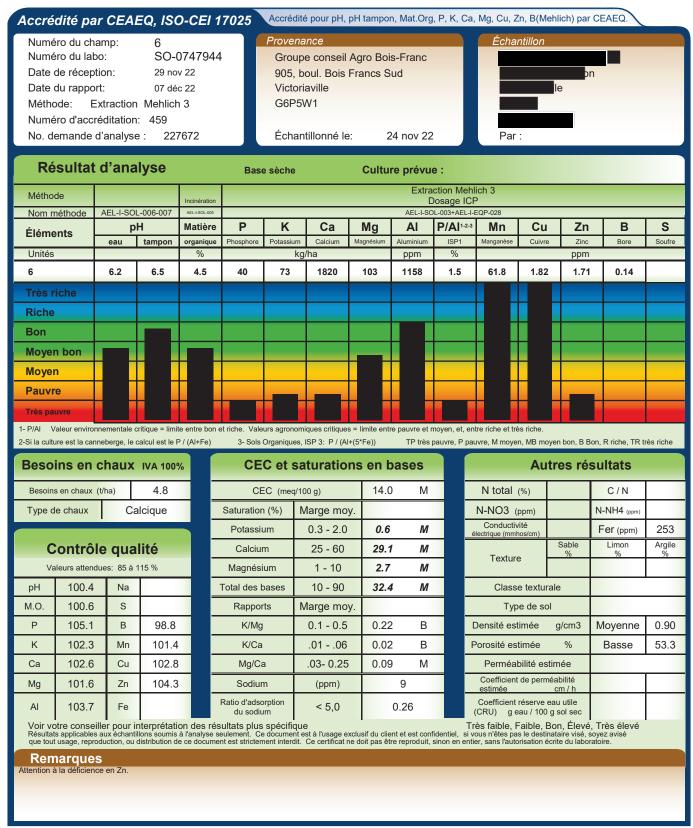
Copyright 2007 No. d'envoi : 15033



1642, de la Ferme, La Pocatière (Québec) G0R 1Z0 Tél. : **418 856.1079** Téléc. : **418 856.6718** Sans frais : 1 866-288-1079

Sol

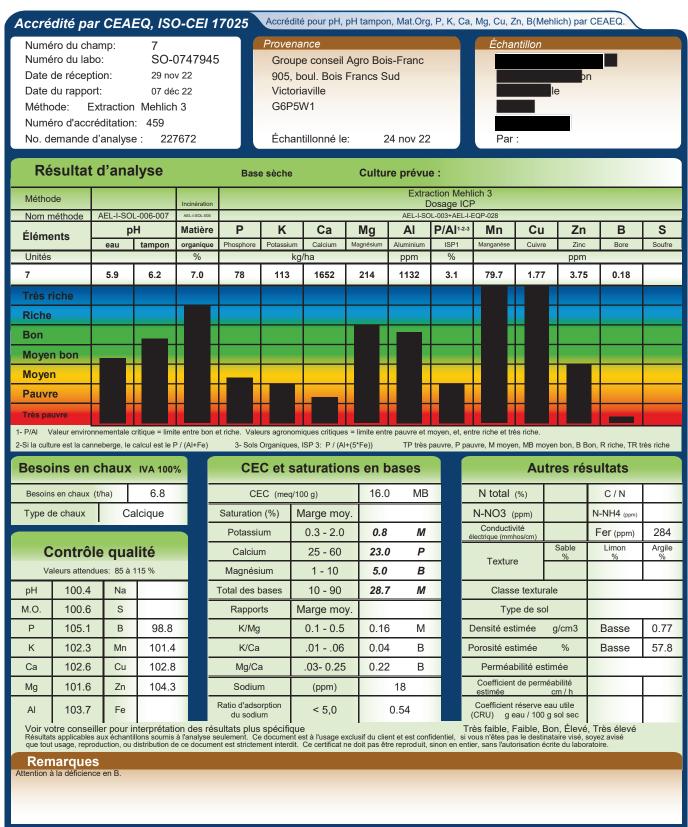
Copyright 2007 No. d'envoi : 15033


1642, de la Ferme, La Pocatière (Québec) G0R 1Z0 Tél. : **418 856.1079** Téléc. : **418 856.6718** Sans frais : 1 866-288-1079

Sans frais: 1 866-288-1079 Courriel: info@agro-enviro-lab.com www.agro-enviro-lab.com

Sol

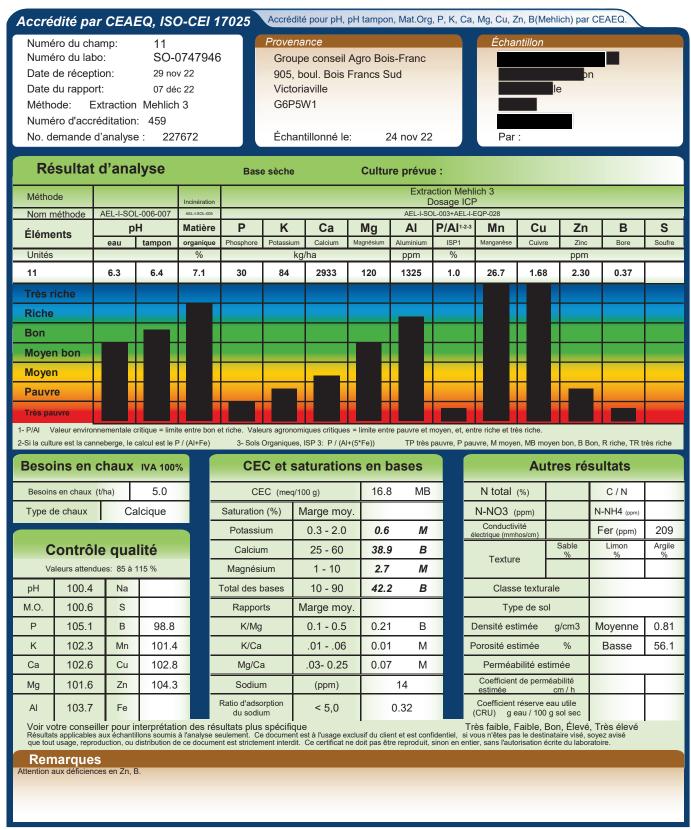
Copyright 2007 No. d'envoi : 15033



1642, de la Ferme, La Pocatière (Québec) G0R 1Z0 Tél. : **418 856.1079** Téléc. : **418 856.6718** Sans frais : 1 866-288-1079

Sol

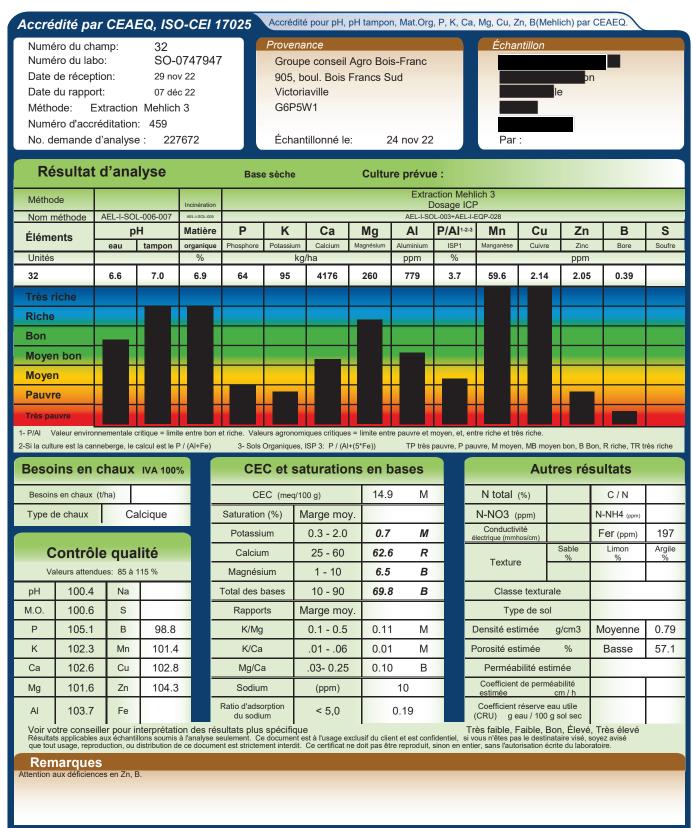
Copyright 2007 No. d'envoi : 15033



1642, de la Ferme, La Pocatière (Québec) G0R 1Z0 Tél. : **418 856.1079** Téléc. : **418 856.6718** Sans frais : 1 866-288-1079

Sol

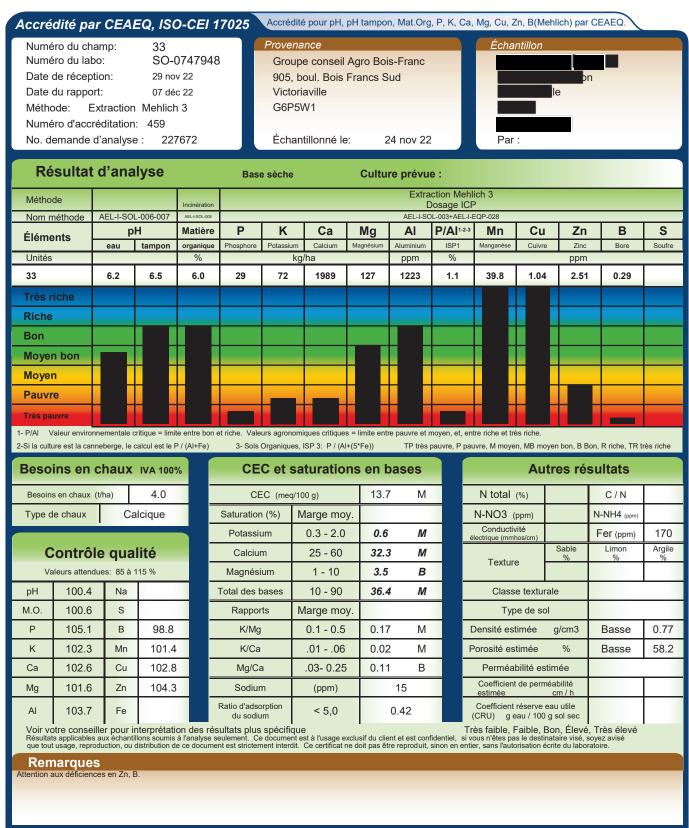
Copyright 2007 No. d'envoi : 15033


1642, de la Ferme, La Pocatière (Québec) G0R 1Z0 Tél. : **418 856.1079** Téléc. : **418 856.6718** Sans frais : 1 866-288-1079

Sans frais: 1 866-288-1079 Courriel: info@agro-enviro-lab.com www.agro-enviro-lab.com

Sol

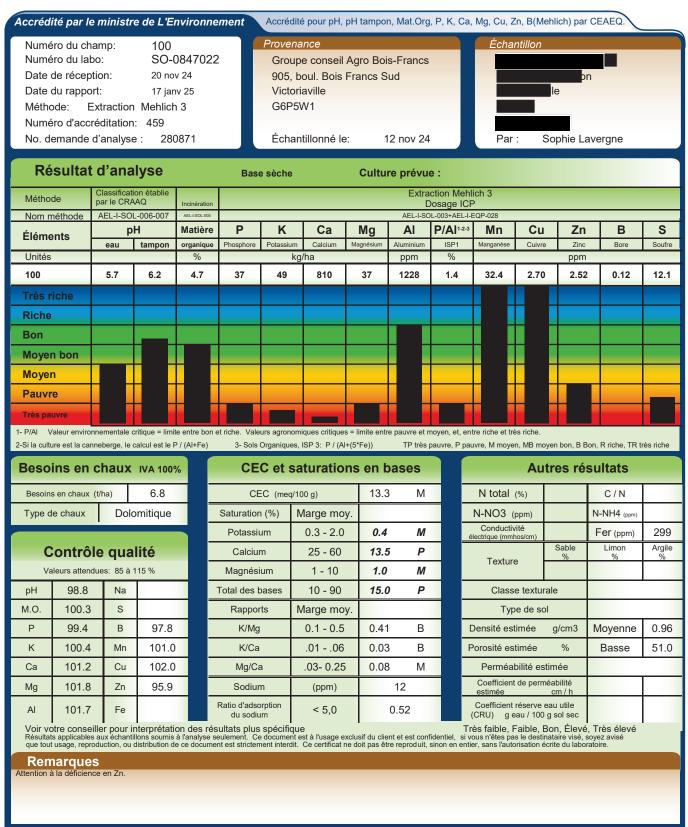
Copyright 2007 No. d'envoi : 15033



1642, de la Ferme, La Pocatière (Québec) G0R 1Z0 Tél. : **418 856.1079** Téléc. : **418 856.6718** Sans frais : 1 866-288-1079

Sol

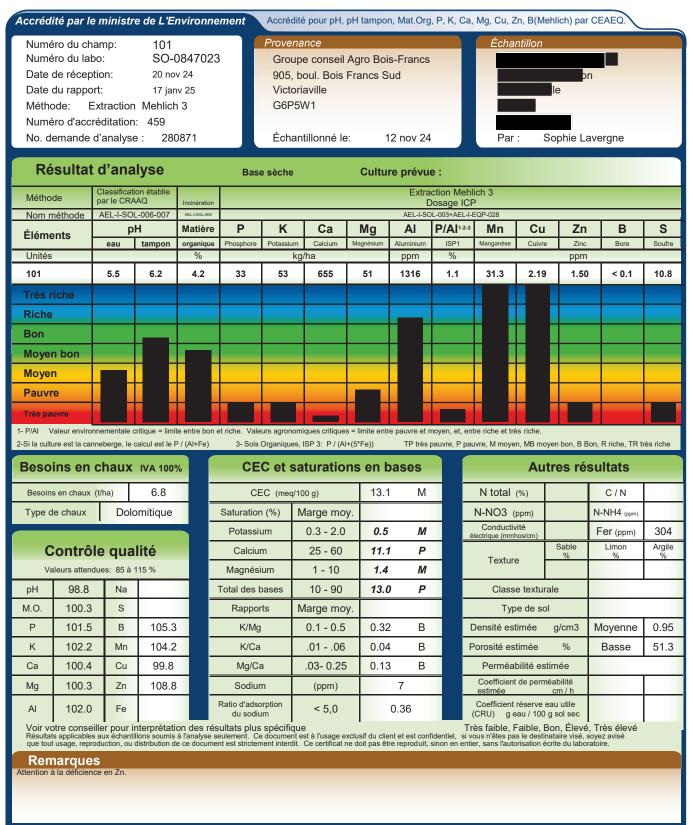
Copyright 2007 No. d'envoi : 15033



1642, de la Ferme, La Pocatière (Québec) G0R 1Z0 Tél. : **418 856.1079** Téléc. : **418 856.6718** Sans frais : 1 866-288-1079

Sol

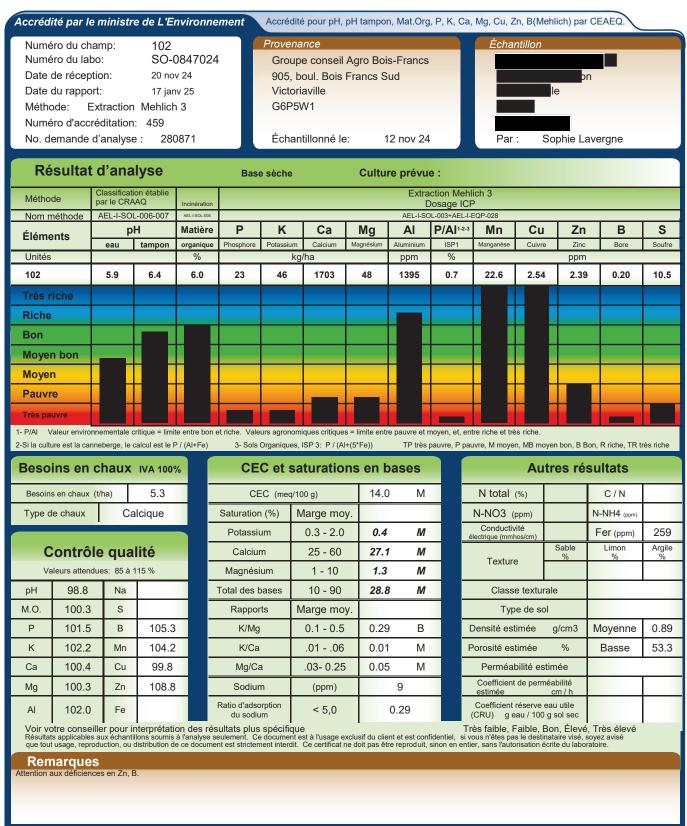
Copyright 2007 No. d'envoi : 43487



1642, de la Ferme, La Pocatière (Québec) G0R 1Z0 Tél. : **418 856.1079** Téléc. : **418 856.6718** Sans frais : 1 866-288-1079

Sol

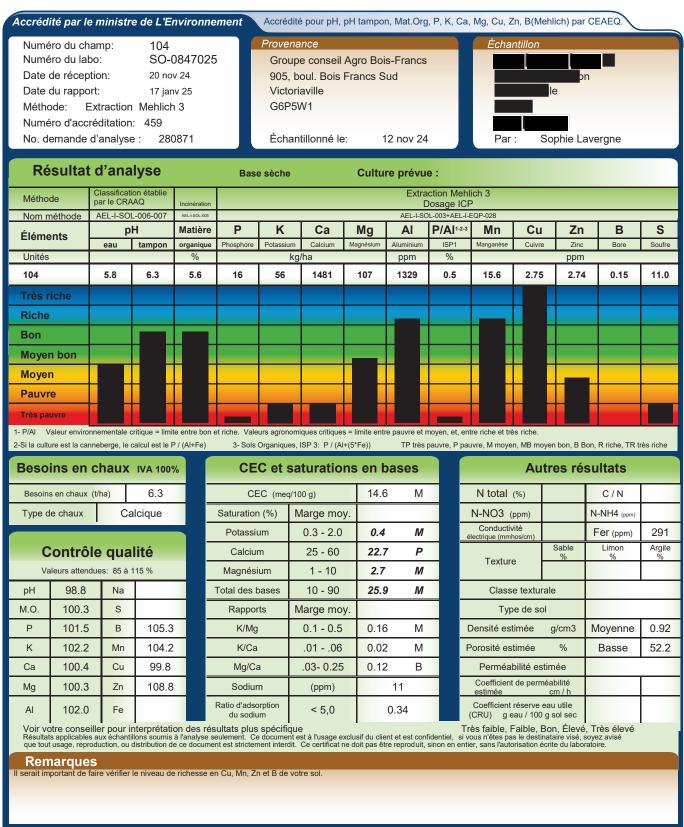
Copyright 2007 No. d'envoi : 43487



1642, de la Ferme, La Pocatière (Québec) G0R 1Z0 Tél. : **418 856.1079** Téléc. : **418 856.6718** Sans frais : 1 866-288-1079

Sol

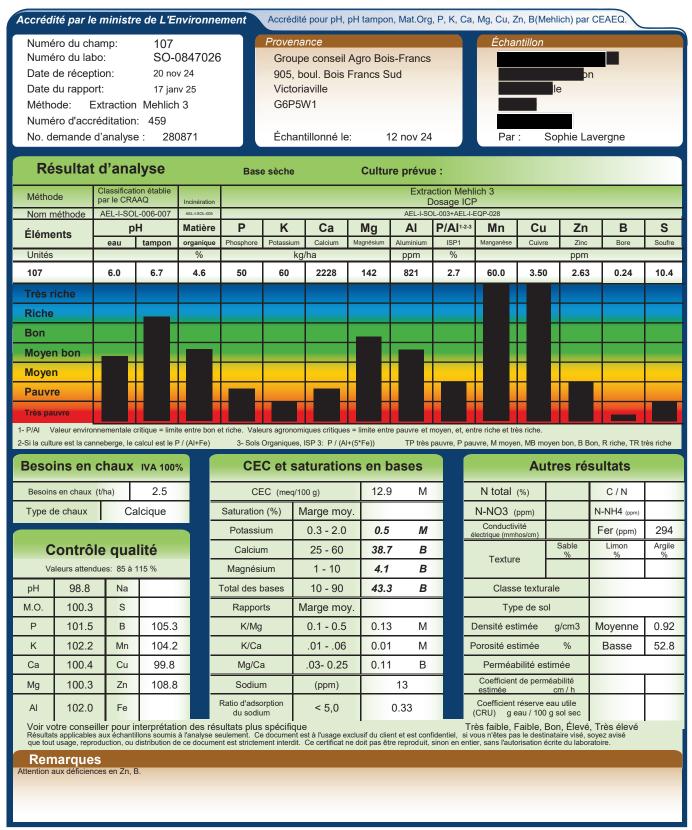
Copyright 2007 No. d'envoi : 43487



1642, de la Ferme, La Pocatière (Québec) G0R 1Z0 Tél. : **418 856.1079** Téléc. : **418 856.6718** Sans frais : 1 866-288-1079

Sol

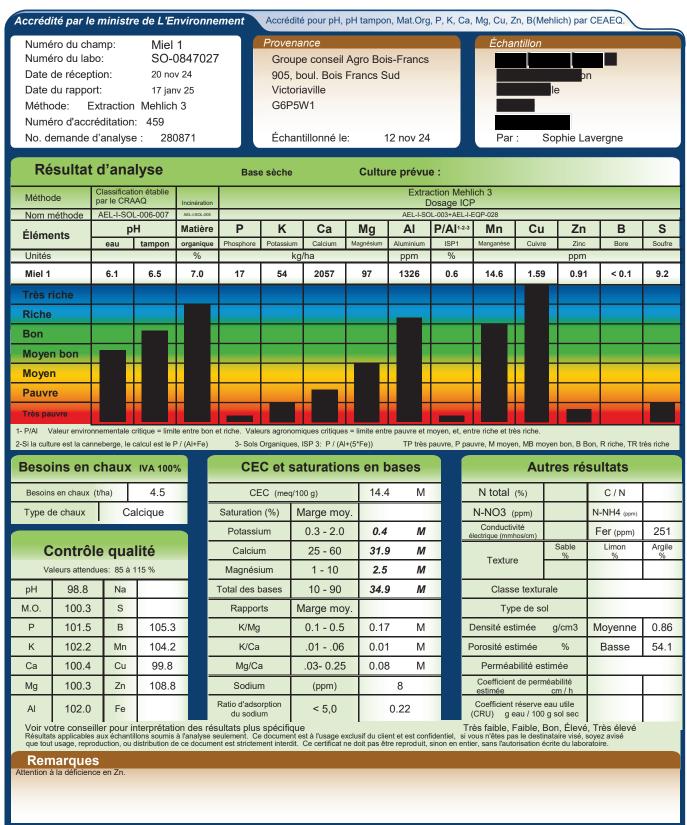
Copyright 2007 No. d'envoi : 43487



1642, de la Ferme, La Pocatière (Québec) G0R 1Z0 Tél. : **418 856.1079** Téléc. : **418 856.6718** Sans frais : 1 866-288-1079

Sol

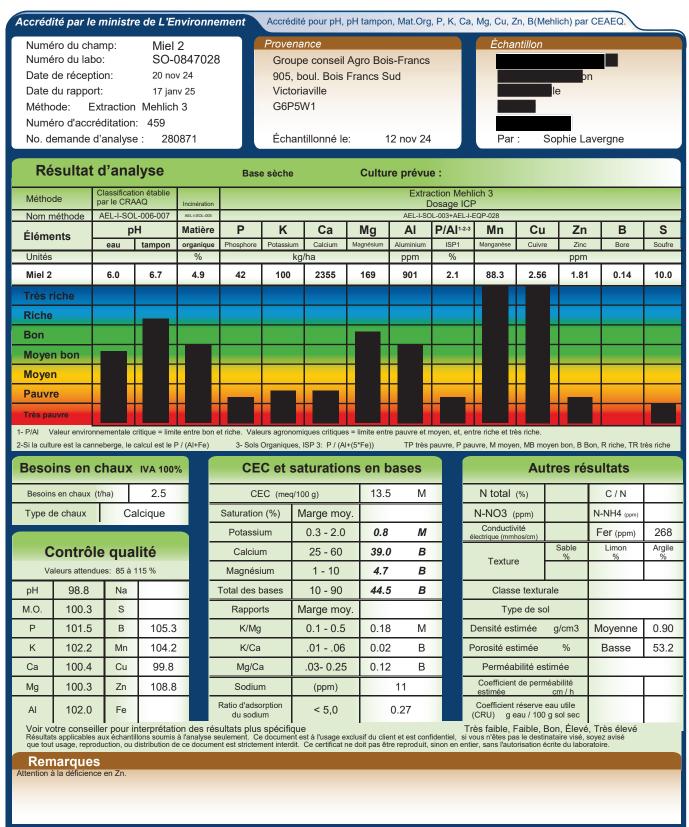
Copyright 2007 No. d'envoi : 43487


1642, de la Ferme, La Pocatière (Québec) G0R 1Z0 Tél. : **418 856.1079** Téléc. : **418 856.6718** Sans frais : 1 866-288-1079

Sans frais: 1 866-288-1079 Courriel: info@agro-enviro-lab.com www.agro-enviro-lab.com

Sol

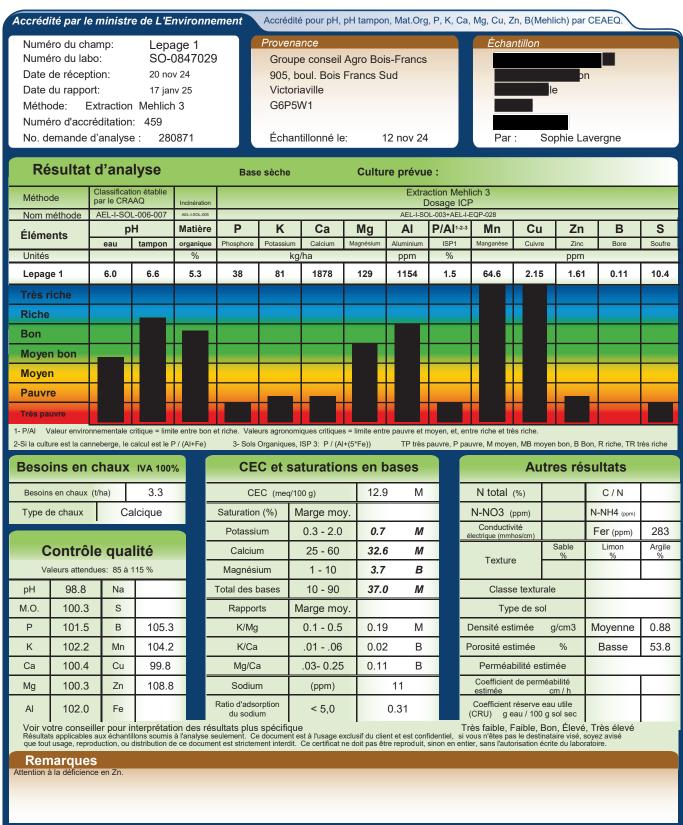
Copyright 2007 No. d'envoi : 43487



1642, de la Ferme, La Pocatière (Québec) G0R 1Z0 Tél. : **418 856.1079** Téléc. : **418 856.6718** Sans frais : 1 866-288-1079

Sol

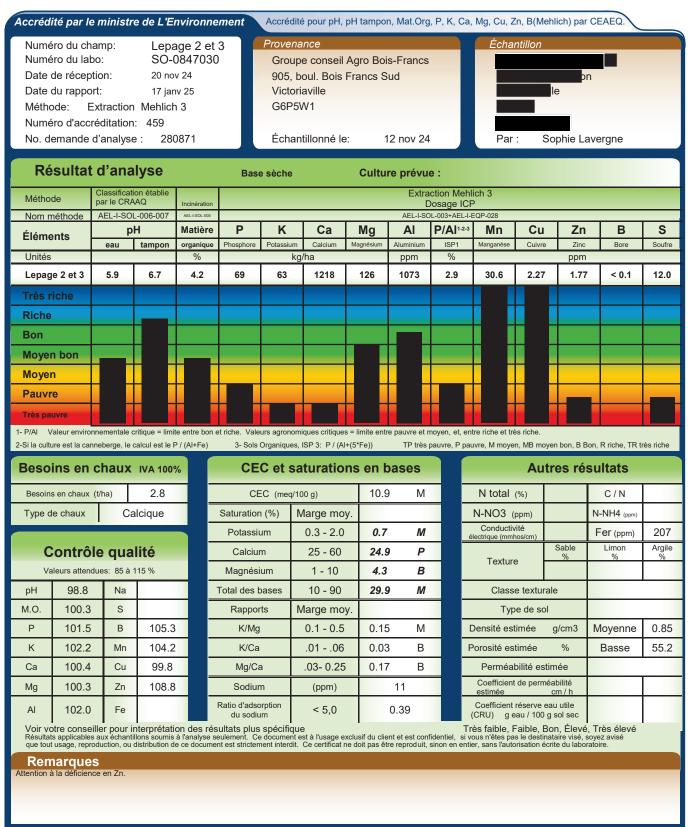
Copyright 2007 No. d'envoi : 43487



1642, de la Ferme, La Pocatière (Québec) G0R 1Z0 Tél. : **418 856.1079** Téléc. : **418 856.6718** Sans frais : 1 866-288-1079

Sol

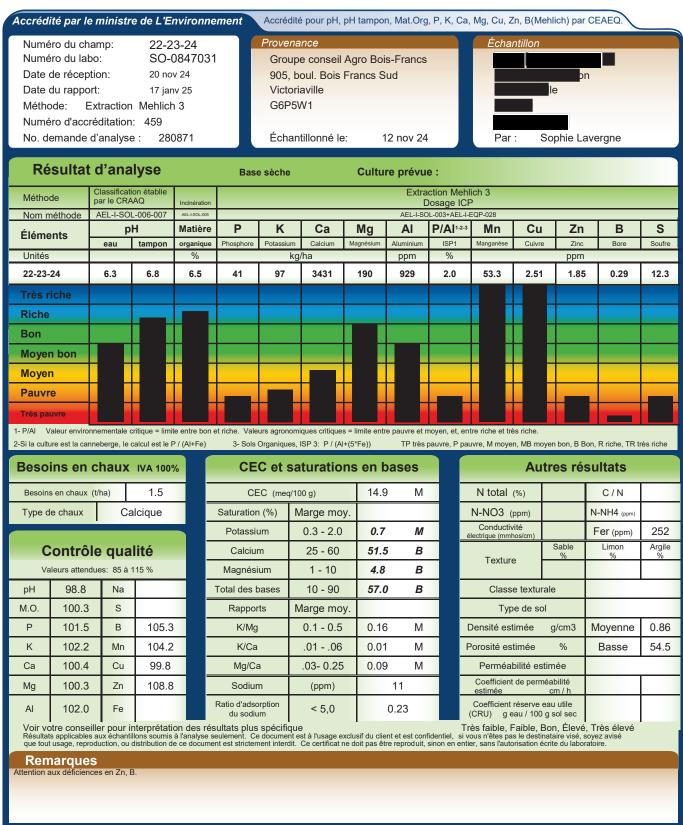
Copyright 2007 No. d'envoi : 43487



1642, de la Ferme, La Pocatière (Québec) G0R 1Z0 Tél. : **418 856.1079** Téléc. : **418 856.6718** Sans frais : 1 866-288-1079

Sol

Copyright 2007 No. d'envoi : 43487



1642, de la Ferme, La Pocatière (Québec) G0R 1Z0 Tél. : **418 856.1079** Téléc. : **418 856.6718** Sans frais : 1 866-288-1079

Sol

Copyright 2007 No. d'envoi : 43487

1642, de la Ferme, La Pocatière (Québec) G0R 1Z0 Tél. : **418 856.1079** Téléc. : **418 856.6718** Sans frais : 1 866-288-1079

Description	# Labo	Identification de	Date	Description	# Labo	Identification de	Date	
ICP (Mehlich)	SO-0847022	l'échantillon 100	Traitement 2025-01-16			l'échantillon	Traitement	
	SO-0847022 SO-0847023	101	2025-01-16					
ICP (Mehlich)	50-0847023 50-0847023-R1							
ICP (Mehlich)		. 101	2025-01-17					
ICP (Mehlich)	SO-0847024	102	2025-01-16					
ICP (Mehlich)	50-0847024-R1	. 102	2025-01-17					
ICP (Mehlich)	SO-0847025	104	2025-01-16					
ICP (Mehlich)	50-0847025-R1	. 104	2025-01-17					
ICP (Mehlich) ICP (Mehlich)	SO-0847026	107	2025-01-16					
, ,	50-0847026-R1	. 107	2025-01-17					
ICP (Mehlich)	SO-0847027	Miel 1	2025-01-16					
ICP (Mehlich)	50-0847027-R1	. Miel 1	2025-01-17					
ICP (Mehlich)	SO-0847028	Miel 2	2025-01-16					
ICP (Mehlich)	SO-0847028-R1	. Miel 2	2025-01-17					
ICP (Mehlich)	SO-0847029	Lepage 1	2025-01-16					
ICP (Mehlich)	50-0847029-R1	Lepage 1	2025-01-17					
ICP (Mehlich)	SO-0847030	Lepage 2 et 3	2025-01-16					
ICP (Mehlich)	5O-0847030-R1		2025-01-17					
ICP (Mehlich)	SO-0847031	22-23-24	2025-01-16					
ICP (Mehlich)	50-0847031-R1	. 22-23-24	2025-01-17					
M.O. + M.S.	SO-0847022	100	2025-01-08					
M.O. + M.S.	SO-0847023	101	2025-01-08					
M.O. + M.S.	SO-0847024	102	2025-01-08					
M.O. + M.S.	SO-0847025	104	2025-01-08					
M.O. + M.S.	SO-0847026	107	2025-01-08					
M.O. + M.S.	SO-0847027	Miel 1	2025-01-08					
M.O. + M.S.	SO-0847028	Miel 2	2025-01-08					
M.O. + M.S.	SO-0847029	Lepage 1	2025-01-08					
M.O. + M.S.	SO-0847030	Lepage 2 et 3	2025-01-08					
M.O. + M.S.	SO-0847031	22-23-24	2025-01-08					
рН	SO-0847022	100	2025-01-15					
pH	SO-0847023	101	2025-01-15					
pH pH	SO-0847024	102 104	2025-01-15 2025-01-15					
рн pH	SO-0847025 SO-0847026	104	2025-01-15					
i i	SO-0847020 SO-0847027	Miel 1	2025-01-15					
pH pH			2025-01-15					
рН	SO-0847028 SO-0847029	Miel 2 Lepage 1	2025-01-15					
рН	SO-0847029 SO-0847030	Lepage 2 et 3	2025-01-15					
рН	SO-0847030	22-23-24	2025-01-15					
рп	30-0647031	22-25-24	2023-01-13					